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NOTE 

Solution of the Shallow Water Equations Using Hybrid Grids 

1. INTRODUCTION 

In recent years a lot of knowledge has been gained 
concerning grids and numerical methods suitable for the 
numerical simulation of fluids and atmospheric modelling, 
in particular. Among the considerations leading to the 
choice of a numerical scheme for a particular model are 
accuracy, the conservation of integral invariants, numerical 
economy, ease of implementation, and a favorable behavior 
with respect to nonlinear instability. 

Accurate schemes are easily obtained by using a high 
order of approximation. While many models use second- 
order numerical methods, the fourth-order schemes 
described by Kreiss et al. [l] are much more accurate for 
solutions which are smooth enough relative to the grid 
length. In the present paper we will use fourth-order 
schemes derived by finite elements, according to Cullen 
[33]. A model using this discretisation has been described 
by Carson et al. [2] and a survey of the finite element 
method was given by Navon [3]. Navon [4,5], Staniforth 
et al. [6], Steppeler [S, 91, and Steppeler et al. [lo] use 
atmospheric models based on the finite element method. 
The accuracy of this method for linear advection problems 
has been analysed by Gresho et al. [7] and it was found to 
be even greater than that of the fourth-order finite difference 
schemes of the Kreiss et al. [l] type. Finite difference 
methods are based on truncated Taylor series expansions, 
and with these methods it is therefore necessary to have a 
smooth solution in relation to the grid used. Such smooth- 
ness is often maintained by a numerical diffusion, which is 
present for numerical reasons. This is opposed to physical 
diffusion, which represents a physical process. In fact, most 
methods would give reasonable accurate results if this 
smoothness condition would be maintained by introducing 
a strong enough numerical diffusion into the model. 
However, a smooth solution means that many gridpoints 
are needed in order to describe an atmospheric structure. To 
use many gridpoints in this way is expensive in terms of 
computer resources, and therefore it is considered desirable 
to have as much structure in the model as possible, which 
means to minimize the amount of smoothing. 

For this reason the behavior of numerical methods at the 
limit of the resolution is interesting, and it has turned out 

that bad accuracy for the shortest resolved scales can lead to 
noisy fields and requires a lot of extra diffusion. A high order 
of approximation will not necessarily solve such problems, 
as it improves, by definition, only the accuracy of the well- 
resolved scales. 

Such problems of noise generation by inaccuracies in the 
poorly resolved scales do not concern the approximation of 
the advection terms of the dynamic equation. It is for these 
terms that the analysis of Gresho et al. [7] and Neta et al. 
[ 1 l] holds. Linear finite elements achieve a high accuracy 
when used on regular grids on unstaggered grids. The 
analysis of the advection term shows that it is adequately 
solved on an unstaggered Arakawa A-grid. In fact, the finite 
element scheme for advection can most conveniently be for- 
mulated on this grid. The use of vorticity and divergence as 
model variables [6, 121 is equivalent to grid staggering. 
This approach achieves only second-order approximation 
for the advection terms. Unstaggered linear finite elements 
for the advection term, as given in [2,4], are much simpler 
to implement and will easily lead to a fourth-order 
approximation. 

Early implementations of the linite element scheme [Z] 
used the unstaggered Arakawa A-grid also for the terms of 
the dynamic equation responsible for the gravitational 
waves. In the light of later research by Schoenstadt [ 13, 141 
and Williams [ 151, this cannot be considered as a good 
approach. 

The approximation of the gravitational terms needs some 
kind of staggered grid in order to avoid severe noise 
problems. This request of staggered grids for the gravita- 
tional terms is widely accepted [ 163 and is connected to 
established mathematical principles [ 191. Further explana- 
tions are given by Sani et al. [ 17, IS]. 

A practical way of incorporating the concept of 
staggering with two-dimensional finite element schemes 
was introduced by Steppeler [20]. A mixture of piecewise 
constant and linear basis functions is used, as first proposed 
for one-dimensional grids by Williams et al. [21]. 

A number of grids were investigated in [20], and the 
representation in the Arakawa C-grid turned out to be most 
suitable for the approximation of the gravitational terms. 
The numerical methods investigated in [20] are rather 
simple, and models based on this method should run very 
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economically on computers. Since the staggering with this 
method is obtained by the use of low order basis functions, 
there is the possibility of a loss of accuracy. 

Unfortunately, while the C-grid method is adequate for 
the approximation of the gravitational terms, it turned out 
[22] that, for the advection terms, the accuracy falls back to 
second order and that the essential advantage of linear finite 
elements [7] is lost. In order to avoid this difficulty and to 
make the practical use of staggered grids possible, the use of 
hybrid grids has been proposed by Steppeler [22]. This 
means the use of staggered and unstaggered grids in the 
same model, and the gravitational and advection terms can 
be computed in the grid which suits them most. The forward 
transformation from the unstaggered to the staggered grid is 
done by a simple interpolation. The backward transforma- 
tion from the staggered to the unstaggered grid has to be the 
inverse of the former operation in order to recover the 
original field completely. If an interpolation were used for 
both forward and backward transformations, a smoothing 
would result from applications of the forward and backward 
operators. The use of two equivalent field representations 
is well known from the spectral method, which uses the 
spectral and gridpoint representations and, for the different 
terms of the dynamic equations, uses that representation 
which is most suitable. 

This scheme was introduced and demonstrated in [22] 
for the one-dimensional barotropic equations, and the pur- 
pose of the present paper is to investigate the practical use 
of this method for two space dimensions. The staggered part 
of the hybrid scheme is the C-grid scheme introduced 
in [20]. 

Hybrid grids are introduced here to switch between an 
unstaggered high-order finite element approximation for 
the advection terms and a staggered treatment of the 
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FIG. 1. The 8 by 8 grid used for the calculations. 

gravitational terms. However, this method can be used for 
many other purposes, whenever one wants to approximate 
a term on a grid different from the others. 

Another field of application for hybrid grids would be the 
in use of semi-Lagrangian methods for the advection term. 
This has been introduced in [23-251 in order to obtain a 
more accurate solution. Recently, this method has drawn 
much interest as a means to achieve computational 
economy [26-281. It is much easier applied on unstaggered 
grids, since the additional computational cost of a staggered 
grid may offset some of the computational economy 
achieved. Hybrid grids offer the possibility of using the 
A-grid for semi-Lagrangian advection and still incorporate 
the advantages of staggering for the gravitational terms. The 
method will be described in Section 2, and in Section 3 a 
numerical example will be given. 

2. DESCRIPTION OF THE 
NUMERICAL METHOD 

We solve the shallow water equations on anf-plane: 

ii=-UU,-VU,+fV-H, 

p= -UV,- VP’,-fu-H, (1) 

hi= -(U(H-Ho)),-(V(H-H,)),. 

In Eq. (1) U, V are the velocity components, H = g& with 
g being the gravitational constant and 4 the height field, 
H,, = g&, with do being the bottom topography. X and Y 
are the space coordinates. We solve Eq. (1) on an 8 by 8 
grid, which is shown in Fig. 1. This is a rather coarse resolu- 
tion, as test calculations by Grammeltvedt [29] indicated 
that at least 12 gridpoints on a wave are necessary to obtain 
a good simulation of an atmospheric wave. However, since 
we intend to use the highly accurate finite element method 
[7] for the advection terms, we expect this grid to provide 
sufficient resolution for a test calculation. Periodic bound- 
ary conditions are used in X-direction. This is implemented 
by identifying rows 1 and 8 in Fig. 1. The scheme using the 
C-grid as basic representation is numerically equivalent. At 
the top and bottom solid wall boundaries V = 0 and 
Hy = Uy = 0 are assumed. 

The main nodepoint grid in Fig. 1 is indicated by integer 
indices. To define the staggered grid representations, half 
integers are used in addition, which define locations 
between two main nodepoints. The discretisation is done on 
grid squares, and Fig. 2 shows the two field representations 
used here. The A-grid uses the main nodepoint grid for all 
fields U, V, H. The field in the C-grid of Fig. 2 is obtained 
by a transformation from the main nodepoint representa- 
tion. The time derivative is then transformed back to the 
A-grid representation. 
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FIG. 2. Field representation in the staggered Arakawa C-grid and the 
unstaggered A-grid. 

The hybrid grid treatment splits the dynamic equation (1) 
in the following way: 

O=k”+@J 

P=k”+G’” (2) 

Qi=‘j”+@f. 

The advection part A and the gravitational part G is defined 
in the following way: 

A”= -uu,- vu, G”= +fV-H, 

A”= -uv,- vv, Gv= -fv- Hy (3) 

kH= -UH,- VH, C+“=(-U,- V,v)(H-Ho). 

The advection terms A are approximated directly in the 
main nodepoint grid. The discretisation used here is 
described in Steppeler et al. [lo]. The method referenced in 
[lo] as the standard Galerkin scheme is used. Any other 
method to which the reader may be familiar, as, for exam- 
ple, a semi-Lagrangian scheme, can be used in a hybrid grid 
combined with a staggered treatment of the gravitational 
terms G. The gravitational terms G are treated according to 
the C-grid scheme defined by Steppeler [20]. This scheme 
defines fields with half integer indices by piecewise constant 
elements and fields with integer indices by piecewise linear 
elements and uses standard Galerkin approximations. 
The C-grid representation is obtained from the 
A-representation. After the G-terms are calculated, the 
result is transformed back into the A-grid. The C-grid 
representation is obtained from the A-grid by the trans- 
formations 

ui3,+l/2= $ t”i,i+ ui,j+l) 

V r+1/2,j=ttVi,j+ vz+l,~) (4) 

H;+,,2,j+1!2=d(Hi,j+Hi+l,i+H,,j+,+Hi+l,j+1). 

The backward transformation from the C-grid to the A-grid 
is obtained by solving Eq. (4) for the amplitudes Ui,j, Vi,jr 
H,,j. For V and H this is easily done using Gaussian 
elimination (see [30]). For the U-field there is the difficulty 

that for every i there are eight j-amplitudes, but only seven 
half-lavel amplitudes Ui, j+ 1,2. In order to close Eqs. (4), we 
demand that the two AX-wave has the minimum amplitude 

; u,,,(-l)‘=O. (5) 
i=l 

Alternative closure conditions, like minimizing the least 
square second field derivatives, have been used successfully. 
The fact that all fields are defined at the same locations 
makes the scheme rather easy to implement and it requires 
small computer resources. 

3. NUMERICAL RESULTS 

The initial values are the same as used in [8, 10, 291. 
Plots of the initial fields are given in [8], 

H(X, Y)=H,,+H,tan(9(y&yo)) 

+ H, (l/cash’ (9(y; “))) (6) 

with 

Ho = 20,000 m2s ~ 2 

H,=4400m2ss2 

H2=2660m2ss2 

L=D=400 

AX= 
40000 11 

7 1O’m 

f = 0.0001 

At = 900 s. 

The leapfrog time discretisation is used. In order to 
demonstrate the effect of grid staggering on the solution, a 
strong mountain forcing was introduced by using a moun- 
tain barrier situated at column 6. An analytic solution of the 
one-dimensional problem was obtained by Edelmann [3 11, 
and this suggests that a stationary ridge will form over the 
mountain. The flow, as generated by the initial values (6), is 
rather unbalanced and creates fast moving gravitational 
waves. In order to obtain a balanced solution, the forecast 
of the first 12 h is time averaged and after this a 48-h forecast 
is done. No time diffusion was necessary to control the com- 
putational mode of the leapfrog scheme. When in semi- 
implicit and semi-Lagrange versions of the model the time 
step was substantially increased; a time filter according to 
Asselin [ 341 became necessary. 

The resulting H field is shown in Figs. 3a,b. The forecast 
shown in Fig. 3a uses the unstaggered A-grid for both the 
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FIG. 3. (a) H-field after a 24 h prediction using the unstaggered A-grid for all terms of the dynamic equation. (b) as (a), but using a hybrid grid which 
computes the gravitational terms on the C-grid. 

advection and the gravitational terms. The solution is con- 
taminated by very strong noise features. According to 
arguments given in [ 13, 14, 19, 201, this was to be expected, 
since A-grid approximations of the gravitational terms do 
not allow for a proper geostrophic adjustment. Figure 3b 
shows the result using the hybrid grid, combining an A-grid 
scheme [lo] for the advection terms with a C-grid scheme 
[20] for the gravitational terms. The noise features are 
virtually absent in this solution, and this scheme can there- 
fore be expected to need much less diffusion than A-grid 
schemes. Figure 3 shows that the hybrid grid scheme, which 
uses the grid staggering for the gravitational terms only, 
shows the same behavior in practice as is expected from 
staggered schemes. This confirms theoretical expectations 
[ 15,201. While the hybrid scheme has been shown to 
demonstrate the low noise features of C-grid schemes, its 
representation of the advection is much more accurate. The 
C-grid representation of advection according to [21] 
is equivalent to the second-order centered difference 
approximation. The A-grid advection using linear finite 
elements, which is used with the hybrid grid here, is fourth- 
order accurate. An investigation of the accuracy of advec- 
tion of these two schemes has been performed in [33,7], 
and the results were very much in favour of the linear finite 
elements, which here are used for advection with the hybrid 
grid. 

4. CONCLUSIONS 

The practical viability of hybrid grids, which use grid 
staggering for the gravitational terms only and keep an 

unstaggered grid for the advection terms, has been 
investigated. This offers the possibility of applying the low- 
order staggered finite element schemes [20] together with a 
high-order treatment of the advection terms. The numerical 
behavior of the solution is such as expected in a staggered 
grid. 
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